Untuk limit x menuju 0 hitunglah
(tg5x)/(sin3x) = …
Bagi orang awam jawabannya sangat mudah yaitu 5/3.
Apakah Anda yakin itu jawaban yang benar?
Banyak anak-anak karena ragu, karena dirasa terlalu mudah, malah tidak mau menjawab dengan 5/3.
Mari kita diskusikan!
Untuk membahasnya kita perlu ke dasar-dasar limit trigonometri. Sudah banyak dibuktikan dalam buku-buku bahwa untuk limit x menuju 0 berlaku:
(sinx)/x = 1;
(tgx)/x = 1;
Biasanya anak-anak harus hafal rumus di atas. Bagi saya rumus ini adalah rumus cepat limit. Tetapi rumus ini beruntung. Ia tidak pernah disebut sebagai rumus sesat. Ia mendapat gelar kehormatan sebagai rumus dasar limit trigonometri.
Dengan rumus dasar limit trigonometri ini kita akan memecahkan
(tg5x) / (sin3x) =
[ (tg5x)(5x/5x) ] / [ (sin3x)(3x/3x) ] =
[(tga)(a/a)] / [(sinb)(b/b)]
dengan a = 5x dan b = 3x;
gunakan rumus dasar trigonometri:
[1.a]/[1.b] =
[5x]/[3x] =
= 5/3 (Selesai)
Kita peroleh jawaban 5/3 sesuai tebakan awal kita.
Apakah kita selalu boleh melakukan tebakan semacam itu?
Boleh.
Tebakan ini sah. Kita mendasarkan pada rumus dasar limit
trigonometri dengan menambah satu langkah implikasi.
Karena (sinx)/x = 1 maka (sinx) = x;
karena (tgx)/x = 1 maka (tgx) = x.
Jadi rumus dasar trigonometri yang kita hafal adalah
sinx = x;
tgx = x.
Dengan sedikit mengubah cara pandang yang kyak gni bisa dapetin keberuntungan besar pada UN, SPMB, UMPTN 2009. Siswa-siswa SMA, mestinya tidak asing dengan cara pandang ini. Kita telah memakai cara pandang ini ketika menghitung interferensi gelombang Young dalam fenomena fisika.
Jadi bila kita terapkan ke soal di atas:
(tg5x)/(sin3x) = 5x/3x = 5/3 (Selesai).
Rumus cepat di atas akan semakin bernilai bila bentuk soalnya semakin rumit seperti
(2x + tg3x)/(x + sin7x) =…
(2x + 3x)/(x + 7x) = 5/8 (Selesai).
nah,kalian jg bs download cara2 yang laen dsni.dalam bentuk notepad..kok:
http://www.4shared.com/dir/11102686/aec9531a/sharing.html
Tidak ada komentar:
Posting Komentar